Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(12): eadl0849, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517965

RESUMO

Icy moons like Enceladus, and perhaps Europa, emit material sourced from their subsurface oceans into space via plumes of ice grains and gas. Both moons are prime targets for astrobiology investigations. Cassini measurements revealed a large compositional diversity of emitted ice grains with only 1 to 4% of Enceladus's plume ice grains containing organic material in high concentrations. Here, we report experiments simulating mass spectra of ice grains containing one bacterial cell, or fractions thereof, as encountered by advanced instruments on board future space missions to Enceladus or Europa, such as the SUrface Dust Analyzer onboard NASA's upcoming Europa Clipper mission at flyby speeds of 4 to 6 kilometers per second. Mass spectral signals characteristic of the bacteria are shown to be clearly identifiable by future missions, even if an ice grain contains much less than one cell. Our results demonstrate the advantage of analyses of individual ice grains compared to a diluted bulk sample in a heterogeneous plume.


Assuntos
Meio Ambiente Extraterreno , Júpiter , Gelo , Exobiologia/métodos , Oceanos e Mares
2.
Nature ; 618(7965): 489-493, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316718

RESUMO

Saturn's moon Enceladus harbours a global1 ice-covered water ocean2,3. The Cassini spacecraft investigated the composition of the ocean by analysis of material ejected into space by the moon's cryovolcanic plume4-9. The analysis of salt-rich ice grains by Cassini's Cosmic Dust Analyzer10 enabled inference of major solutes in the ocean water (Na+, K+, Cl-, HCO3-, CO32-) and its alkaline pH3,11. Phosphorus, the least abundant of the bio-essential elements12-14, has not yet been detected in an ocean beyond Earth. Earlier geochemical modelling studies suggest that phosphate might be scarce in the ocean of Enceladus and other icy ocean worlds15,16. However, more recent modelling of mineral solubilities in Enceladus's ocean indicates that phosphate could be relatively abundant17. Here we present Cassini's Cosmic Dust Analyzer mass spectra of ice grains emitted by Enceladus that show the presence of sodium phosphates. Our observational results, together with laboratory analogue experiments, suggest that phosphorus is readily available in Enceladus's ocean in the form of orthophosphates, with phosphorus concentrations at least 100-fold higher in the moon's plume-forming ocean waters than in Earth's oceans. Furthermore, geochemical experiments and modelling demonstrate that such high phosphate abundances could be achieved in Enceladus and possibly in other icy ocean worlds beyond the primordial CO2 snowline, either at the cold seafloor or in hydrothermal environments with moderate temperatures. In both cases the main driver is probably the higher solubility of calcium phosphate minerals compared with calcium carbonate in moderately alkaline solutions rich in carbonate or bicarbonate ions.

3.
Astrobiology ; 23(1): 60-75, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36454287

RESUMO

The reliable identification of biosignatures is key to the search for life elsewhere. On ocean worlds like Enceladus or Europa, this can be achieved by impact ionization mass spectrometers, such as the SUrface Dust Analyzer (SUDA) on board NASA's upcoming Europa Clipper mission. During spacecraft flybys, these instruments can sample ice grains formed from subsurface water and emitted by these moons. Previous laboratory analog experiments have demonstrated that SUDA-type instruments could identify amino acids, fatty acids, and peptides in ice grains and discriminate between their abiotic and biotic origins. Here, we report experiments simulating impact ionization mass spectra of ice grains containing DNA, lipids, and metabolic intermediates extracted from two bacterial cultures: Escherichia coli and Sphingopyxis alaskensis. Salty Enceladan or Europan ocean waters were simulated using matrices with different NaCl concentrations. Characteristic mass spectral signals, such as DNA nucleobases, are clearly identifiable at part-per-million-level concentrations. Mass spectra of all substances exhibit unambiguous biogenic patterns, which in some cases show significant differences between the two bacterial species. Sensitivity to the biosignatures decreases with increasing matrix salinity. The experimental parameters indicate that future impact ionization mass spectrometers will be most sensitive to the investigated biosignatures for ice grain encounter speeds of 4-6 km/s.


Assuntos
Meio Ambiente Extraterreno , Gelo , Meio Ambiente Extraterreno/química , Exobiologia , Bactérias , Lipídeos
4.
Proc Natl Acad Sci U S A ; 119(39): e2201388119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122219

RESUMO

Saturn's moon Enceladus has a potentially habitable subsurface water ocean that contains canonical building blocks of life (organic and inorganic carbon, ammonia, possibly hydrogen sulfide) and chemical energy (disequilibria for methanogenesis). However, its habitability could be strongly affected by the unknown availability of phosphorus (P). Here, we perform thermodynamic and kinetic modeling that simulates P geochemistry based on recent insights into the geochemistry of the ocean-seafloor system on Enceladus. We find that aqueous P should predominantly exist as orthophosphate (e.g., HPO42-), and total dissolved inorganic P could reach 10-7 to 10-2 mol/kg H2O, generally increasing with lower pH and higher dissolved CO2, but also depending upon dissolved ammonia and silica. Levels are much higher than <10-10 mol/kg H2O from previous estimates and close to or higher than ∼10-6 mol/kg H2O in modern Earth seawater. The high P concentration is primarily ascribed to a high (bi)carbonate concentration, which decreases the concentrations of multivalent cations via carbonate mineral formation, allowing phosphate to accumulate. Kinetic modeling of phosphate mineral dissolution suggests that geologically rapid release of P from seafloor weathering of a chondritic rocky core could supply millimoles of total dissolved P per kilogram of H2O within 105 y, much less than the likely age of Enceladus's ocean (108 to 109 y). These results provide further evidence of habitable ocean conditions and show that any oceanic life would not be inhibited by low P availability.


Assuntos
Sulfeto de Hidrogênio , Fósforo , Amônia , Carbono , Dióxido de Carbono , Minerais , Oceanos e Mares , Fosfatos , Dióxido de Silício , Água
5.
Astrobiology ; 20(10): 1168-1184, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32493049

RESUMO

Identifying and distinguishing between abiotic and biotic signatures of organic molecules such as amino acids and fatty acids is key to the search for life on extraterrestrial ocean worlds. Impact ionization mass spectrometers can potentially achieve this by sampling water ice grains formed from ocean water and ejected by moons such as Enceladus and Europa, thereby exploring the habitability of their subsurface oceans in spacecraft flybys. Here, we extend previous high-sensitivity laser-based analog experiments of biomolecules in pure water to investigate the mass spectra of amino acids and fatty acids at simulated abiotic and biotic relative abundances. To account for the complex background matrix expected to emerge from a salty Enceladean ocean that has been in extensive chemical exchange with a carbonaceous rocky core, other organic and inorganic constituents are added to the biosignature mixtures. We find that both amino acids and fatty acids produce sodiated molecular peaks in salty solutions. Under the soft ionization conditions expected for low-velocity (2-6 km/s) encounters of an orbiting spacecraft with ice grains, the unfragmented molecular spectral signatures of amino acids and fatty acids accurately reflect the original relative abundances of the parent molecules within the source solution, enabling characteristic abiotic and biotic relative abundance patterns to be identified. No critical interferences with other abiotic organic compounds were observed. Detection limits of the investigated biosignatures under Enceladus-like conditions are salinity dependent (decreasing sensitivity with increasing salinity), at the µM or nM level. The survivability and ionization efficiency of large organic molecules during impact ionization appear to be significantly improved when they are protected by a frozen water matrix. We infer from our experimental results that encounter velocities of 4-6 km/s are most appropriate for impact ionization mass spectrometers to detect and discriminate between abiotic and biotic signatures.


Assuntos
Aminoácidos/análise , Exobiologia , Ácidos Graxos/análise , Gelo , Meio Ambiente Extraterreno , Gelo/análise , Planetas Menores , Oceanos e Mares
6.
Glob Chang Biol ; 26(7): 4158-4168, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32412147

RESUMO

This study evaluates the dynamics of soil organic carbon (SOC) under perennial crops across the globe. It quantifies the effect of change from annual to perennial crops and the subsequent temporal changes in SOC stocks during the perennial crop cycle. It also presents an empirical model to estimate changes in the SOC content under crops as a function of time, land use, and site characteristics. We used a harmonized global dataset containing paired-comparison empirical values of SOC and different types of perennial crops (perennial grasses, palms, and woody plants) with different end uses: bioenergy, food, other bio-products, and short rotation coppice. Salient outcomes include: a 20-year period encompassing a change from annual to perennial crops led to an average 20% increase in SOC at 0-30 cm (6.0 ± 4.6 Mg/ha gain) and a total 10% increase over the 0-100 cm soil profile (5.7 ± 10.9 Mg/ha). A change from natural pasture to perennial crop decreased SOC stocks by 1% over 0-30 cm (-2.5 ± 4.2 Mg/ha) and 10% over 0-100 cm (-13.6 ± 8.9 Mg/ha). The effect of a land use change from forest to perennial crops did not show significant impacts, probably due to the limited number of plots; but the data indicated that while a 2% increase in SOC was observed at 0-30 cm (16.81 ± 55.1 Mg/ha), a decrease in 24% was observed at 30-100 cm (-40.1 ± 16.8 Mg/ha). Perennial crops generally accumulate SOC through time, especially woody crops; and temperature was the main driver explaining differences in SOC dynamics, followed by crop age, soil bulk density, clay content, and depth. We present empirical evidence showing that the FAO perennialization strategy is reasonable, underscoring the role of perennial crops as a useful component of climate change mitigation strategies.


Assuntos
Carbono , Solo , Agricultura , Sequestro de Carbono , Produtos Agrícolas
7.
Glob Chang Biol ; 26(3): 1085-1108, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31532049

RESUMO

To limit warming to well below 2°C, most scenario projections rely on greenhouse gas removal technologies (GGRTs); one such GGRT uses soil carbon sequestration (SCS) in agricultural land. In addition to their role in mitigating climate change, SCS practices play a role in delivering agroecosystem resilience, climate change adaptability and food security. Environmental heterogeneity and differences in agricultural practices challenge the practical implementation of SCS, and our analysis addresses the associated knowledge gap. Previous assessments have focused on global potentials, but there is a need among policymakers to operationalise SCS. Here, we assess a range of practices already proposed to deliver SCS, and distil these into a subset of specific measures. We provide a multidisciplinary summary of the barriers and potential incentives towards practical implementation of these measures. First, we identify specific practices with potential for both a positive impact on SCS at farm level and an uptake rate compatible with global impact. These focus on: (a) optimising crop primary productivity (e.g. nutrient optimisation, pH management, irrigation); (b) reducing soil disturbance and managing soil physical properties (e.g. improved rotations, minimum till); (c) minimising deliberate removal of C or lateral transport via erosion processes (e.g. support measures, bare fallow reduction); (d) addition of C produced outside the system (e.g. organic manure amendments, biochar addition); (e) provision of additional C inputs within the cropping system (e.g. agroforestry, cover cropping). We then consider economic and non-cost barriers and incentives for land managers implementing these measures, along with the potential externalised impacts of implementation. This offers a framework and reference point for holistic assessment of the impacts of SCS. Finally, we summarise and discuss the ability of extant scientific approaches to quantify the technical potential and externalities of SCS measures, and the barriers and incentives to their implementation in global agricultural systems.


Assuntos
Gases de Efeito Estufa , Agricultura , Carbono , Sequestro de Carbono , Efeito Estufa , Mudança Social , Solo
8.
Astrobiology ; 20(2): 179-189, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31825243

RESUMO

Reliable identification of biosignatures, such as amino acids, fatty acids, and peptides, on extraterrestrial ocean worlds is a key prerequisite for space missions that search for life or its emergence on these worlds. One promising approach is the use of high-performance in situ impact ionization mass spectrometers to sample water ice grains emerging from ocean-bearing moons such as Europa or Enceladus. A predecessor of such detectors, the Cosmic Dust Analyzer on board the Cassini spacecraft, has proven to be very successful in analyzing inorganic and organic ocean constituents and with that characterizing the habitability of Enceladus ocean. However, biosignatures have not been definitively identified in extraterrestrial ocean environments so far. Here, we investigate with an analog experiment the spectral appearance of amino acids, fatty acids, and peptides in water ice grains, together with their detection limits, as applicable to spaceborne mass spectrometers. We employ a laboratory-based laser induced liquid beam ion desorption technique, proven to simulate accurately the impact ionization mass spectra of water ice grains over a wide range of impact speeds. The investigated organics produce characteristic mass spectra, with molecular peaks as well as clearly identifiable, distinctive fragments. We find the detection limits of these key biosignatures to be at the µM or nM level, depending on the molecular species and instrument polarity, and infer that impact ionization mass spectrometers are most sensitive to the molecular peaks of these biosignatures at encounter velocities of 4-6 km/s.


Assuntos
Biomarcadores/análise , Exobiologia/métodos , Meio Ambiente Extraterreno/química , Gelo/análise , Espectrometria de Massas/métodos , Aminoácidos/análise , Poeira Cósmica/análise , Ácidos Graxos/análise , Limite de Detecção , Oceanos e Mares , Peptídeos/análise , Saturno
9.
J Clean Prod ; 207: 1163-1179, 2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31598037

RESUMO

The agricultural sector accounts for 70% of all water consumption and poses great pressure on ground water resources. Therefore, evaluating agricultural water consumption is highly important as it allows supply chain actors to identify practices which are associated with unsustainable water use, which risk depleting current water resources and impacting future production. However, these assessments are often not feasible for crop producers as data, models and experiments are required in order to conduct them. This work introduces a new on-line agricultural water use assessment tool that provides the water footprint and irrigation requirements at field scale based on an enhanced FAO56 approach combined with a global climate, crop and soil databases. This has been included in the Cool Farm Tool - an online tool which already provides metrics for greenhouse gas emissions and biodiversity impacts and therefore allows for a more holistic assessment of environmental sustainability in farming and agricultural supply chains. The model is tested against field scale and state level water footprint data providing good results. The tool provides a practical, reliable way to assess agricultural water use, and offers a means to engage growers and stakeholders in identifying efficient water management practices.

10.
Environ Sci Technol ; 53(17): 10246-10257, 2019 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-31362503

RESUMO

Updating and refining the N2O emission factors (N2O-EFs) are vital to reduce the uncertainty in estimates of direct N2O emissions. Based on a database with 1151 field measurements across China, the N2O-EFs were established via three approaches including the maximum likelihood method, a linear regression with an intercept and a linear regression with the intercept set to 0 using 70% of the observations. The remaining 30% of the observations were then used to evaluate the predicted N2O-EFs. The third method had the highest R2 of 0.39 and the best model efficiency of 0.38 with no significant bias, showing the best calculation efficiency. The results showed that the N2O-EFs varied with agroregions, crops, and management patterns. The agroregions of Huang-Huai-Hai and Yangtze River had the higher N2O-EFs in maize and wheat seasons than other regions, and the highest N2O-EFs of 0.66-0.92% in the rice season was found in the South and Southwest agroregions. Both fertilizer types and water regimes had the remarkable effects on N2O-EFs. Based on the best estimation by the selected method, direct N2O emissions from China's crop cultivation were estimated to be 194 Gg N2O-N with a 95% confidence interval of 180-208 Gg N2O-N in the year 2016.


Assuntos
Poluentes Atmosféricos , Óxido Nitroso , Agricultura , China , Fertilizantes , Nitrogênio , Estações do Ano , Solo
11.
Rapid Commun Mass Spectrom ; 33(22): 1751-1760, 2019 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31286576

RESUMO

RATIONALE: Detecting ice grains with impact ionization mass spectrometers in space provides information about the compositions of ice grains and their sources. Depending on the impact speeds of the ice grains onto the metal target of a mass spectrometer, ionization conditions can vary substantially, resulting in changes to the appearance of the resulting mass spectra. METHODS: Here we accurately reproduce mass spectra of water ice grains, recorded with the Cosmic Dust Analyzer (CDA) on board the Cassini spacecraft at typical impact speeds ranging between 4 km/s to 21 km/s, with a laboratory analogue experiment. In this Laser-Induced Liquid Beam Ion Desorption (LILBID) approach, a µm-sized liquid water beam is irradiated with a pulsed infrared laser, desorbing charged analyte and solvent aggregates and isolated ions, which are subsequently analyzed in a time-of-flight (TOF) mass spectrometer. RESULTS: We show that our analogue experiment can reproduce impact ionization mass spectra of ice grains obtained over a wide range of impact speeds, aiding the quantitative analyses of mass spectra from space. CONCLUSIONS: Spectra libraries created with the LILBID experiment will be a vital tool for inferring the composition of ice grains from mass spectra recorded by both past and future impact ionization mass spectrometers (e.g. the SUrface Dust Analyzer (SUDA) onboard NASA's Europa Clipper Mission or detectors on a future Enceladus Mission).

12.
Sci Total Environ ; 673: 207-217, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-30986680

RESUMO

India has the highest national freshwater demand globally and 91% of India's freshwater is used in the agriculture sector. Cereals account for over 50% of the dietary water footprint in India and represent a potential opportunity for reducing water use in Indian agriculture. This study combines governmental production and irrigation statistics with crop distribution maps to examine trends in annual water use for cereal production in India between 2005 and 2014. A new online water assessment tool, Cool Farm Tool Water (CFTW), was used to calculate water use and derive seasonal state-level blue and green water footprints for rice, wheat, sorghum, millet and maize. The analysis indicates that India achieved 26.4% increased total cereal production between 2005 and 2014 without additional water or land use. Cereal water footprints have declined due to higher yields for most crops and slightly lower rates of evapotranspiration. There has also been a shift in the area under production away from the Kharif (monsoon) towards the Rabi (dry) season in which total water footprints for all cereals except rice are substantially lower (-33.4% to -45.0% compared to Kharif), but show a significantly higher dependency on ground and surface water. The value of this study is two-fold. First, it provides a full assessment of production trends for the five major cereals in India for each year from 2005 to 2014 and links it to water use. Secondly, it uses updated seasonal water footprints, which demonstrate the potential for changes in cereal production practices to contribute to improved efficiency of water use in India. Future pressures on scarce water resources may encourage transition to cereals with lower irrigation dependency, in particular maize, but also sorghum and millet. In addition, increased emphasis on improving millet and sorghum yields would be of benefit to secure cereal production and reduce its overall water footprint.


Assuntos
Agricultura/métodos , Grão Comestível/crescimento & desenvolvimento , Recursos Hídricos/provisão & distribuição , Abastecimento de Água/estatística & dados numéricos , Agricultura/estatística & dados numéricos , Conservação dos Recursos Hídricos/estatística & dados numéricos , Produtos Agrícolas , Fertilizantes , Índia , Milhetes , Oryza , Sorghum , Triticum , Zea mays
13.
Sci Total Environ ; 655: 1342-1354, 2019 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-30577126

RESUMO

Long-term changes in average temperatures, precipitation, and climate variability threaten agricultural production, food security, and the livelihoods of farming communities globally. Whilst adaptation to climate change is necessary to ensure food security and protect livelihoods of poor farmers, mitigation of greenhouse gas (GHG) emissions can lessen the extent of climate change and future needs for adaptation. Many agricultural practices can potentially mitigate GHG emissions without compromising food production. India is the third largest GHG emitter in the world where agriculture is responsible for 18% of total national emissions. India has identified agriculture as one of the priority sectors for GHG emission reduction in its Nationally Determined Contributions (NDCs). Identification of emission hotspots and cost-effective mitigation options in agriculture can inform the prioritisation of efforts to reduce emissions without compromising food and nutrition security. We adopted a bottom-up approach to analyse GHG emissions using large datasets of India's 'cost of cultivation survey' and the '19th livestock census' together with soil, climate and management data for each location. Mitigation measures and associated costs and benefits of adoption, derived from a variety of sources including the literature, stakeholder meetings and expert opinion, were presented in the form of Marginal Abatement Cost Curves (MACC). We estimated that by 2030, business-as-usual GHG emissions from the agricultural sector in India would be 515 Megatonne CO2 equivalent (MtCO2e) per year with a technical mitigation potential of 85.5 MtCO2e per year through adoption of various mitigation practices. About 80% of the technical mitigation potential could be achieved by adopting only cost-saving measures. Three mitigation options, i.e. efficient use of fertilizer, zero-tillage and rice-water management, could deliver more than 50% of the total technical abatement potential.

14.
Sci Total Environ ; 643: 1411-1418, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30189557

RESUMO

Agriculture is a major contributor to India's environmental footprint, particularly through greenhouse gas (GHG) emissions from livestock and fresh water used for irrigation. These impacts are likely to increase in future as agriculture attempts to keep pace with India's growing population and changing dietary preferences. Within India there is considerable dietary variation, and this study therefore aimed to quantify the GHG emissions and water usage associated with distinct dietary patterns. Five distinct diets were identified from the Indian Migration Study - a large adult population sample in India - using finite mixture modelling. These were defined as: Rice & low diversity, Rice & fruit, Wheat & pulses, Wheat, rice & oils, Rice & meat. The GHG emissions of each dietary pattern were quantified based on a Life Cycle Assessment (LCA) approach, and water use was quantified using Water Footprint (WF) data. Mixed-effects regression models quantified differences in the environmental impacts of the dietary patterns. There was substantial variability between diets: the rice-based patterns had higher associated GHG emissions and green WFs, but the wheat-based patterns had higher blue WFs. Regression modelling showed that the Rice & meat pattern had the highest environmental impacts overall, with 0.77 (95% CI 0.64-0.89) kg CO2e/capita/day (31%) higher emissions, 536 (95% CI 449-623) L/capita/day (24%) higher green WF and 109 (95% CI 85.9-133) L/capita/day (19%) higher blue WF than the reference Rice & low diversity pattern. Diets in India are likely to become more diverse with rising incomes, moving away from patterns such as the Rice & low diversity diet. Patterns such as the Rice & meat diet may become more common, and the environmental consequences of such changes could be substantial given the size of India's population. As global environmental stress increases, agricultural and nutrition policies must recognise the environmental impacts of potential future dietary changes.


Assuntos
Dieta/estatística & dados numéricos , Gases de Efeito Estufa , Abastecimento de Água/estatística & dados numéricos , Efeito Estufa , Humanos , Índia , Água
15.
Sci Rep ; 7: 44235, 2017 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-28281637

RESUMO

There has been much debate about the uncertainties associated with the estimation of direct and indirect agricultural nitrous oxide (N2O) emissions in developing countries and in particular from tropical regions. In this study, we report an up-to-date review of the information published in peer-review journals on direct N2O emissions from agricultural systems in tropical and sub-tropical regions. We statistically analyze net-N2O-N emissions to estimate tropic-specific annual N2O emission factors (N2O-EFs) using a Generalized Additive Mixed Model (GAMM) which allowed the effects of multiple covariates to be modelled as linear or smooth non-linear continuous functions. Overall the mean N2O-EF was 1.2% for the tropics and sub-tropics, thus within the uncertainty range of IPCC-EF. On a regional basis, mean N2O-EFs were 1.4% for Africa, 1.1%, for Asia, 0.9% for Australia and 1.3% for Central &South America. Our annual N2O-EFs, estimated for a range of fertiliser rates using the available data, do not support recent studies hypothesising non-linear increase N2O-EFs as a function of applied N. Our findings highlight that in reporting annual N2O emissions and estimating N2O-EFs, particular attention should be paid in modelling the effect of study length on response of N2O.

16.
Agric Ecosyst Environ ; 237: 234-241, 2017 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-28148994

RESUMO

Agriculture is a major source of greenhouse gas (GHG) emissions globally. The growing global population is putting pressure on agricultural production systems that aim to secure food production while minimising GHG emissions. In this study, the GHG emissions associated with the production of major food commodities in India are calculated using the Cool Farm Tool. GHG emissions, based on farm management for major crops (including cereals like wheat and rice, pulses, potatoes, fruits and vegetables) and livestock-based products (milk, eggs, chicken and mutton meat), are quantified and compared. Livestock and rice production were found to be the main sources of GHG emissions in Indian agriculture with a country average of 5.65 kg CO2eq kg-1 rice, 45.54 kg CO2eq kg-1 mutton meat and 2.4 kg CO2eq kg-1 milk. Production of cereals (except rice), fruits and vegetables in India emits comparatively less GHGs with <1 kg CO2eq kg-1 product. These findings suggest that a shift towards dietary patterns with greater consumption of animal source foods could greatly increase GHG emissions from Indian agriculture. A range of mitigation options are available that could reduce emissions from current levels and may be compatible with increased future food production and consumption demands in India.

17.
Chem Commun (Camb) ; 51(95): 16886-99, 2015 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-26458233

RESUMO

Over the last decade or so, a range of polypyrrole-based particles have been designed and evaluated for space science applications. This electrically conductive polymer enables such particles to efficiently acquire surface charge, which in turn allows their acceleration up to the hypervelocity regime (>1 km s(-1)) using a Van de Graaff accelerator. Either organic latex (e.g. polystyrene or poly(methyl methacrylate)) or various inorganic materials (such as silica, olivine or pyrrhotite) can be coated with polypyrrole; these core-shell particles are useful mimics for understanding the hypervelocity impact ionisation behaviour of micro-meteorites (a.k.a. cosmic dust). Impacts on metal targets at relatively low hypervelocities (<10 km s(-1)) generate ionic plasma composed mainly of molecular fragments, whereas higher hypervelocities (>10 km s(-1)) generate predominately atomic species, since many more chemical bonds are cleaved if the particles impinge with higher kinetic energy. Such fundamental studies are relevant to the calibration of the cosmic dust analyser (CDA) onboard the Cassini spacecraft, which was designed to determine the chemical composition of Saturn's dust rings. Inspired by volcanism observed for one of the Jupiter's moons (Io), polypyrrole-coated sulfur-rich latexes have also been designed to help space scientists understand ionisation spectra originating from sulfur-rich dust particles. Finally, relatively large (20 µm diameter) polypyrrole-coated polystyrene latexes have proven to be useful for understanding the extent of thermal ablation of organic projectiles when fired at ultralow density aerogel targets at up to 6.1 km s(-1) using a Light Gas Gun. In this case, the sacrificial polypyrrole overlayer simply provides a sensitive spectroscopic signature (rather than a conductive overlayer), and the scientific findings have important implications for the detection of organic dust grains during the Stardust space mission.

18.
Science ; 345(6198): 786-91, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25124433

RESUMO

Seven particles captured by the Stardust Interstellar Dust Collector and returned to Earth for laboratory analysis have features consistent with an origin in the contemporary interstellar dust stream. More than 50 spacecraft debris particles were also identified. The interstellar dust candidates are readily distinguished from debris impacts on the basis of elemental composition and/or impact trajectory. The seven candidate interstellar particles are diverse in elemental composition, crystal structure, and size. The presence of crystalline grains and multiple iron-bearing phases, including sulfide, in some particles indicates that individual interstellar particles diverge from any one representative model of interstellar dust inferred from astronomical observations and theory.

19.
Philos Trans R Soc Lond B Biol Sci ; 367(1586): 311-21, 2012 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22144393

RESUMO

Systems approaches have great potential for application in predictive ecology. In this paper, we present a range of examples, where systems approaches are being developed and applied at a range of scales in the field of global change and biogeochemical cycling. Systems approaches range from Bayesian calibration techniques at plot scale, through data assimilation methods at regional to continental scales, to multi-disciplinary numerical model applications at country to global scales. We provide examples from a range of studies and show how these approaches are being used to address current topics in global change and biogeochemical research, such as the interaction between carbon and nitrogen cycles, terrestrial carbon feedbacks to climate change and the attribution of observed global changes to various drivers of change. We examine how transferable the methods and techniques might be to other areas of ecosystem science and ecology.


Assuntos
Ecologia/métodos , Biologia de Sistemas/métodos , Carbono/química , Mudança Climática , Ecossistema , Nitrogênio/química
20.
Science ; 307(5713): 1274-6, 2005 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-15731446

RESUMO

During Cassini's approach to Saturn, the Cosmic Dust Analyser (CDA) discovered streams of tiny (less than 20 nanometers) high-velocity (approximately 100 kilometers per second) dust particles escaping from the saturnian system. A fraction of these impactors originated from the outskirts of Saturn's dense A ring. The CDA time-of-flight mass spectrometer recorded 584 mass spectra from the stream particles. The particles consist predominantly of oxygen, silicon, and iron, with some evidence of water ice, ammonium, and perhaps carbon. The stream particles primarily consist of silicate materials, and this implies that the particles are impurities from the icy ring material rather than the ice particles themselves.


Assuntos
Saturno , Carbono , Meio Ambiente Extraterreno , Hidrogênio , Gelo , Ferro , Espectrometria de Massas , Nitrogênio , Oxigênio , Compostos de Amônio Quaternário , Silício , Astronave
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...